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Abstract

Given a particular product to produce, firms have several alternative production tech-

nologies from which to choose. This paper examines the effect of production technolo-

gies, directly and indirectly through complexity and task interdependence, on outcomes

essential to the organization of work. Our study uses online job vacancy postings in

the U.S. manufacturing sector during 2017-2021 to analyze technical occupations (i.e.,

engineers, technicians, and operators) in plants that implement one of six primary

technologies: subtraction, forming, molding, additive manufacturing, chemical, and

assembly. Controlling for different forms of automation, location, and other factors,

we find that the differences in the division of labor, specialization, and span of control

among technologies are driven by differences in complexity. Additive manufacturing,

chemical, and assembly are technologically more complex than forming, molding, and

subtraction, and, as a result, they need more jobs to be designed, more tasks and

skills to be bundled into a job, and fewer employees to be overseen by a manager.

Moreover, each technology exhibits a distinct pattern of two forms of task interdepen-

dence—reciprocal and sequential, and therefore the effects on the three outcomes are

more nuanced.
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1 Introduction

Organizations across the world strive to improve process efficiency by continuously

adopting new technologies and reorganizing the work accordingly. Emerging technologies,

such as artificial intelligence, blockchain, and robots continue to reshape work across all

industries (Bailey, 2022). Industrial robots have replaced workers in performing danger-

ous and mundane tasks with better precision, and the scope of tasks they can perform

expands through the integration with artificial intelligence. The underlying technologies for

transforming raw materials into finished goods in manufacturing, however, remain largely

unchanged;1 it is automation technology that has altered which tasks are performed by

whom. Yet, these more fundamental processes have not received enough attention in the

management literature.

Given a particular product and level of output, firms have several alternative production

technologies from which to choose. There are six principal technologies for making goods:

subtracting from a block of material, shaping material, pouring material into a mold, mixing

chemical substances, adding layers of material, or assembling parts. The technology of

production determines what tasks must be carried out to make a product. From making

toys to assembling fuel nozzle tips, more than one technique can be deployed. A toy can be

made by pouring heated liquid plastic into reusable molds or printing layers upon layers of

material. In the former, molds of different shapes are needed to accommodate part geometry,

and the solidified parts are assembled. In the latter, the entire toy can be made using a single

printer. Thus, production technologies may have implications on how firms organize work, for

instance, on what type of skills and how many workers are needed to operate the machines.

This illustrates the importance of technological choice for organizational design. First,

more complex production technologies require more demanding tasks and higher skill levels

(Ben-Ner et al., 2023). How does this affect how work is organized within an establishment?

Second, extant studies have documented the effects of technological change on wages and

employment, and yet the more enduring fundamental processes have received little attention,

despite the fact that production technology is ”sticky”. Our data shows that 94.5 percent

of plants implementing a primary technology still used the same technology a decade later.2

Finally, labor costs comprise 24 percent of typical manufacturing costs, and an additional

20 percent is needed for engineering and research and development that involve technical

1For instance, the casting technology can be traced back to 4,000 B.C.E. after the discovery of copper
(Groover, 2020), but the fundamental casting process remains unchanged today, wherein liquid metal is
poured into a cast, the solidified part is removed, and post-processing is performed.

2See Appendix Table A1.
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occupations (Groover, 2020). Given that almost thirteen million workers—fifteen percent

of which are production workers—are employed in the manufacturing sector (United States

Bureau of Labor Statistics, 2023), these fundamental technologies could have significant long-

term impacts on the organization of work. Lacking evidence of how the characteristics of

each production technology affect the organization of work, firms face uncertainty in choosing

which process or combination of processes is best to produce goods. In this paper, we offer

the first analysis of the effects of different production technologies in manufacturing on the

division of labor and specialization, and other aspects of work at the establishment level.

We use the task-based approach in our analysis. We characterize tasks in terms of their

function in the production process and their general attributes. Function corresponds to the

phase in the process, such as product development, production, or process management.

Task attributes include number, complexity, and interdependence.3 A larger number of

tasks (a longer production process) requires more distinct jobs, other things equal. Greater

task complexity must be supported by more skilled workers, entailing greater specializa-

tion. Greater interdependence among tasks calls for broader jobs (multi-tasking) and less

specialization.

Production technologies differ in the functions and attributes of the tasks they entail,

such that, for example, one technology may require more development and design and fewer

production tasks and entail fewer, more complex, and more interdependent tasks than an-

other technology, throughout the entire production process or just in some phases. This

implies different degrees of specialization and different combinations of occupations in dif-

ferent technologies.

We empirically examine the effects of different technologies of production, which are

likely to yield heterogeneous effects on the division of labor and specialization in manufactur-

ing. We use job postings by manufacturing plants over the course of five years. We analyze

the data at the plant level under the assumption that this period is long enough for a plant

to seek new hires for a representative sample of its workforce. Different turnover rates across

occupations may cause biased representations in plants’ workforce, but this would not affect

the estimates of technology effects (unless occupational turnover varies systematically with

technology). We use the five-year data to represent a snapshot of a plant’s tasks and relate

them to technologies across plants. We assume that the technology of production remains

stable during the five-year period.

3This characterization summarizes Perrow’s (1967) classification, which also includes routine and variabil-
ity. We will discuss later other but closely related characterizations, including the now canonical nonroutine
analytic, routine cognitive, nonroutine manual, routine manual, and interactive introduced by (Autor et al.,
2003)
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Using the near universe of job postings in the U.S. manufacturing for 2017-2021, we

construct an analytical sample of plants for which we can ascertain a dominant technology

of production, one of the six noted earlier. The sample contains 9,816 plants that belong to

3,070 firms and had 1,358,806 job postings. For each job posting, we identify occupation, task

and skill requirements and their location in the production process. Using job posting level

information, we construct plant-level measures of division of labor, specialization, and span

of control. We distinguish technical occupations (engineers, technicians, and operators),

managers, and support staff. Our principal analyses relate the various measures to the

technology of production, automation in different phases, plant size, geographic location,

firm characteristics, union coverage, and other variables.

We find that technologies that require more complex tasks (additive manufacturing,

chemical, and assembly) entail a more detailed division of labor, deeper as well as wider spe-

cialization, and a narrower span of control than technologies that are relatively less complex

(forming, shaping, subtraction). Technologies affect these outcomes indirectly through task

complexity and, to a lesser extent, interdependence.

2 Related literature and theoretical framework

Division of labor has been recognized since antiquity as beneficial in organizations and

in society at large.4 Smith (1786) argued that a detailed division of labor has two advantages.

”First, the improvement of the dexterity of the workmen, necessarily increases the quantity

of the work he can perform; and the division of labour, by reducing every man’s business to

some one simple operation, and by making this operation the sole employment of his life,

necessarily increases very much the dexterity of the workman. . . Secondly, the advantage

which is gained by saving the time commonly lost in passing from one sort of work to another,

is much greater than we should at first view be apt to imagine it. It is impossible to pass

very quickly from one kind of work to another, that is carried on in a different place, and

with quite different tools.”

Babbage (1832) added to Smith’s analysis the idea that tasks should be bundled into

jobs according to the cost of the skills they require.5 Stigler (1952), Yang and Borland (1991),

4Sun (2012) provides an analytical survey of economic thought on division of labor in different civilizations
from antiquity to recent contributions.

5”That the master manufacturer, by dividing the work to be executed into different processes, each
requiring different degrees of skill or of force, can purchase exactly that precise quantity of both which is
necessary for each process; whereas, if the whole work were executed by one workman, that person must
possess sufficient skill to perform the most difficult, and sufficient strength to execute the most laborious, of
the operations into which the art is divided.” (Babbage, 1832, ch. 19 para. 239).
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Becker and Murphy (1992), and others include an additional factor: costs of communication

and coordination among specialized workers. Communication and coordination may be

hampered by technical difficulties involving complex tasks, which exacerbate asymmetric

information and agency problems (Becker and Murphy, 1992). This suggests that greater

task complexity is conducive to a less detailed division of labor and more multitasking.

Interdependence among tasks increases the need for communication and coordination if the

tasks are carried out by different individuals; hence it is also conducive to multi-tasking

(Lindbeck and Snower, 2000). An increase in complexity strains the capacity of an individual

to master it, requiring relatively narrow specialization based on extensive skills.

Much has changed since Smith’s time. The production steps in the manufacturing of

pins and other products remain the same, but many tasks are aided or carried out by ma-

chines. Several studies focused on ICT and computer-based technology, which were found em-

pirically to favor specialization and relatively detailed division of labor, presumably because

they facilitate communication and coordination (Borghans and ter Weel, 2006; Akçomak

et al., 2011). Others argued that computerization has increased complementarity among

workers’ tasks, leading to demand for broadening of jobs (multitasking) to handle interde-

pendence (Lindbeck and Snower, 2000), that is, to a less detailed division of labor (Caroli

and Van Reenen, 2001). These studies, however, are at the industry level—information at

the establishment level is hard to collect for more than a handful of establishments.

The relationship between technology and span of control has been studied by Hickson

et al. (1969), Blau et al. (1976), Collins and Hull (1986), and others, inspired by Woodward

(1965). The empirical studies were limited to around a hundred establishments and tested

whether technological complexity (Woodward’s classification, unit of mass and continuous

based entailing increased complexity) affects the span of control and other organizational

variables. The findings of this literature are inconsistent, and suggest that other factors such

as establishment size and automation may be more important than technology.

Building on these literatures as well as on engineering literature, we develop a theo-

retical framework for understanding the effects of production technologies on the division of

labor, specialization, and span of control. The framework is summarized in Figure 1.

Technologies of production differ in how they use inputs of labor, machines, and soft-

ware to transform materials into products. These differences have implications for broad

aspects of the production process, which we characterize in terms of flexibility, length, and

integration. The degree of flexibility of the production process and the attributes of the

output has been a central concept in the study of the effects of technology on work and
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Figure 1: Theoretical framework

organization (Thompson, 1967; Sethi and Sethi, 1990; MacDuffie, 1995; Stabell and Fjeld-

stad, 1998; Akçomak et al., 2011). More flexible technologies require more deviations from

rules and making contingent choices, as well as experimentation to ensure desirable outcomes

than entailed by less flexible technologies. Greater flexibility contributes to a more complex

production environment, with more complex tasks and greater interdependence, especially

of the reciprocal type (Perrow, 1967; Sethi and Sethi, 1990; Lindbeck and Snower, 2000;

Ben-Ner and Urtasun, 2013). In comparison, more rigid technologies are easier to manage,

and the tasks are more clearly delineated.

The length of the production process reflects the number of steps required in the

production process. The longer the process, the greater is the need for coordination among

sequentially interdependent tasks. Process integration refers to the extent to which steps

in the production process can be carried out independently from each other or are tightly

coupled and not separable and are therefore interdependent. Longer processes and more

integrated processes are more complex, with implications similar to those discussed in the

previous paragraph.

In Figure 1 we indicate that technology complexity, manifested in task complexity and

interdependence, affects the division of labor and specialization, and the span of control.

Specifically, greater complexity requires more skills, that is, deeper specialization. This is

tantamount to detailed division of labor. However, greater complexity calls for more and

deeper skills to handle complex tasks as well as the independence arising from detailed divi-

sion of labor (multiplicity of jobs). Interdependence requires that individuals in interacting

jobs have some skills to understand also the jobs with which they interdependent.

To handle greater task complexity and interdependence, supervision and guidance need

to be greater than in the case of more straightforward and independent jobs. This entails

a narrower span of control reflected in more managers to interact with a given number

of employees, and more engineers to interact with a given number of lower skill workers

(Bell, 1967; Gittell, 2001). Woodward (1965) observes a curvilinear relationship between

complexity and span of control. As plant complexity increases, the number of subordinates
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that a manager can effectively supervise tends to decrease as they need to devote more time

to oversee complex tasks. This leads to fewer subordinates as complexity increases, but only

up to intermediate levels. As tasks become too complex, however, managers will delegate

more decision-making authority to subordinates and, consequently, the time to supervise each

subordinate will decrease and the number of subordinates that can be effectively overseen

increases.

We make a reasonable assumption that highly complex plants such as ones observed by

Woodward (1965) comprise a disproportionately small number in our sample for two reasons.

First, a company needs only a few highly complex plants, such as research and development

centers, relative to the number of processing and assembly plants, as it would be inefficient

to decentralize highly integrated conceptual tasks in various locations. Second, these plants

are owned primarily by a handful of large companies. Thus, most manufacturing plants in

our sample are likely to have low to intermediate complexity, and we would observe only the

decreasing part of Woodward’s curvilinear relationship. Based on these considerations, we

propose the following hypotheses:

Hypothesis 1 Technologies with higher complexity have (a) more detailed division of labor,

(b) deeper specialization, and (c) narrower span of control.

Hypothesis 2 Technologies with greater task interdependence have (a) more detailed divi-

sion of labor, (b) wider specialization, and (c) narrower span of control.

To formulate specific hypotheses relative to the technologies discussed in this paper,

we describe how the different technologies work, and how they differ in terms of flexibility,

length, and integration. The principal manufacturing technologies were described in the

Introduction; Table 1 provides more details, including keywords (terms) used to describe

them (discussed later) and the type of materials used in them.

The last three rows of Table 1 describe our assessment of the extent of flexibility,

length, and integration of the technologies. In sum, we assess that forming is relatively

inflexible, and separable, molding and subtraction are more flexible, longer and separable,

whereas the other three technologies are fairly integrated, with chemical long and inflexible,

assembly with variable flexibility and length, and additive manufacturing most flexible and

integrated and shortest of all. As a result of the differences in the three dimensions, we rank

the complexity of manufacturing technologies based principally on their flexibility in process

and output, and secondarily on length and integration.6

Forming is technologically not flexible as it typically consists of fewer production steps,

6See Appendix Figure B1 for the process flow of each production technology.

7



Table 1: Characteristics of production technologies
Characteristics Forming Molding Subtraction Chemical Additive

manufacturing
(AM)

Assembly

Manufacturing
processes de-
scription

Use of force to
shape materials

Use of molds
to shape raw
materials

Reduction of
blocks of material
to desired shapes

Use of chemical
reactions to
transform organic
and inorganic raw
materials into a
final product

Addition of
successive layers
of raw materials

Putting together
intermediate
parts to form a
complete product

Keywords for
technology
identification –
examples

Rolling, forging,
extrusion, wire
drawing, bending,
spinning, stamp-
ing

Casting, mold-
ing, lay-up,
thermoforming,
hydroforming,
vacuum forming,
sintering

Turning, drilling,
milling, cutting,
broaching, saw-
ing, water jet
cutting, laser
beam machining

NAICS code
325 instead of
keywords

3d printing /
additive manu-
facturing, powder
bed fusion, binder
jetting

Assembly and its
variation

Materials Metals Metals, ceramics,
polymers (liquid)

Metals, poly-
mers, composites
(wood)

Chemical sub-
stances

Polymers and
metals, and other
materials (pow-
der, filaments)

Parts from other
technologies

Flexibility –
process and
output

Low – requires
specialized equip-
ment; products
have simple ge-
ometry

Medium – can
produce parts
with more com-
plex geometry,
but needs special-
ized equipment (a
cast or mold)

Medium – can
produce parts
with more com-
plex geometry,
but needs special-
ized equipment
(CNC)

Low – needs
specialized equip-
ment to produce
specific products;
not cost-effective
to modify process

High – general-
purpose technol-
ogy

Low to high –
depends on the
types of parts
being assembled

Length (num-
ber of produc-
tion steps)

Short process Medium-length
process

Medium-length
process

Long process Short process Varies, depending
on the types of
parts

Integration Few, highly
separable steps

Highly separable
steps

Highly separable
steps

Highly-integrated
continuous flow

Production is
integrated in a
box

Varies, depending
on the types of
parts

Notes: The classification of technologies and keywords are based on Groover (2020) and Ulrich (n.d.). The
discussion of flexibility is based on authors’ judgement. In addition to keywords to identify technologies, we
also use a negative list to exclude similar terms with unrelated meaning, such as forecasting, cutting edge,
or IBM assembler (a programming language).

has a more limited choice of raw materials that can be processed (wires and sheets of metal),

and produces simple products. It needs specialized equipment, such as benders, rollers, and

cutters, that are set up according to the desired part geometry, thus making adjustments

costly. Molding is more flexible than forming as it can process a wider variety of raw

materials, such as plastic, rubber, or metal. It typically requires specialized equipment, such

as a mold or cast, that are shaped and set up according to the desired product geometry.

Molds and casts can be reusable or expendable depending on the specific process, and output

flexibility can be moderately high as a new mold can be created with reasonable costs.

Subtraction is also able to transform a wide variety of materials, such as wood, plastic, and

metal, with more complex product geometry. It can be performed manually or aided by

computer numerical control (CNC). A digital design and machine instructions are needed if

a CNC is used. More complex product geometry and relatively low cost of a digital design

allows for greater flexibility. Additive manufacturing is a versatile emerging technology that

allows making products with highly complex geometry from a wide variety of materials. In

this technology, a digital design is fed into a 3D printer to instruct it to add successive

layers of material. Low cost of a digital design and customizable layers making it a highly

flexible, short and integrated technology. Chemical manufacturing transforms materials

into a product using elaborate processes (chemical reactions and purification) with highly

specialized equipment. The sophistication of chemical reaction and purification steps makes
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it a highly complex technology. Finally, assembly sources parts from one or more other

technologies. Flexibility of this technology depends on the parts being assembled. With

the application of modular technology and robotic arms that are easily adjustable, this

technology can be highly flexible.

In sum, additive manufacturing, chemical, and assembly require more complex pa-

rameters to adjust and we predict that they are more complex than forming, molding and

subtraction. The differences in reciprocal interdependence among technologies follow the dif-

ferences in complexity, generally because handling complexity demands more interactions,

whereas sequential interdependence depends on the length and integration of tasks.

3 Empirical analysis

3.1 Data

Our data come from online job vacancy postings in the U.S. manufacturing sector from

2017 to 2021 collected by Burning Glass Technologies/Lightcast (BGT). BGT scrapes va-

cancy postings from more than 40,000 online job boards and company websites. It removes

duplicate postings and systematically classifies the information contained in the postings,

including occupation, tasks, requisite skills, education, certification, and experience, as well

as employer name, industry, and location. BGT data have been used to analyze jobs and

skills in several recent articles, including Hershbein and Kahn (2018), Deming and Kahn

(2018), Börner et al. (2018), Deming and Noray (2020), and Ben-Ner et al. (2023), all of

which provide extensive descriptions of the data. BGT uses machine learning algorithms to

convert the text of job postings into strings of terms. This procedure considerably reduces

the number of words employed to describe a job compared to the original text. We utilize

BGT-annotated strings of terms, to which we refer as skillsets, to examine skills and tasks as

demanded by employers.7 We start from 9,229,007 manufacturing job postings that contain

at least two terms. We focus on core manufacturing occupations that are directly impacted

by the choice of technology: engineers, technicians, and operators, to which we refer collec-

tively as ETO. These are occupations that are involved in the production process, and thus

their tasks and skills are mostly impacted by technology. BGT classifies a six-digit Stan-

dard Occupational Classification (SOC) code to each job posting. For example, a “Machine

Operator” is classified as 51-9199 (Production Workers, All Other) and an “Assembler” is

7For instance, the string of term for a job posting dated August 31, 2018, for Production Technician I in
3M located in Seattle, Washington contains cleaning, crucible, operations management, personal protective
equipment (ppe), forklift operation, storage of products/inventory, packaging, and physical abilities.
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classified as 51-2092 (Team Assemblers). We use these SOC codes to classify job postings

into managers (11-0000), engineers (17-2000), technicians (17-3020 and 17-3030), and oper-

ators (49-0000 and 51-0000). Managers are further classified into technical managers—i.e.,

managerial occupations involved in the production phases—and non-technical managers.8

In total, there are 3,849,793 manager and ETO job postings in our initial dataset.

From these job postings, we select establishments, to which we refer as plants, that

have a valid firm identifier, a geolocation coordinate, and at least ten combined ETO post-

ings across the five-year period.9 A primary technology for each selected plant is identified

by matching job titles and BGT-extracted terms with our list of keywords. We use regular

expressions to allow for variability in wordings. The plant-level primary technology identifi-

cation follows a two-step process. First, we identify forming, molding, subtraction, chemical,

and additive manufacturing plants. A plant is assigned one of these primary technologies if

the share of ETO job postings that contain terms from a particular technology is at least

20 percent of the overall ETO job postings, and the share is the largest among the six

technologies.10 Plants that do not meet these two criteria are classified as general plants.

Second, among general plants, we apply at least 20 percent of ETO job postings with NAICS

code 325 to identify chemical manufacturing plants. The remaining general plants are not

included in the analyses of the present paper.11

Next, we assign a main NAICS code to a plant based on information available in

job postings, which may have different NAICS codes (pre-assigned by BGT) although they

originate from the same plant. Thus, we perform several steps to identify a plant-level NAICS

code. First, we use the job posting-level 3-digit NAICS code that most frequently appears

in a plant. Second, for plants within which all job postings do not have a NAICS code, we

8Job postings with SOC codes 11-1021 (General and Operations Managers), 11-3021 (Computer and In-
formation Systems Managers), 11-3051 (Industrial Production Managers), 11-3061 (Purchasing Managers),
11-3071 (Transportation, Storage, and Distribution Managers), 11-9013 (Farmers, Ranchers, and Other Agri-
cultural Managers), 11-9021 (Construction Managers), 11-9041 (Architectural and Engineering Managers),
11-9111 (Medical and Health Services Managers), and 11-9121 (Natural Sciences Managers) are classified as
technical managers, whereas other SOC codes 11 are classified as non-technical managers.

9As a robustness check, we also try a minimum of 30 ETO postings per plant to investigate whether our
analysis is affected by the size of ETO job postings. We replicate some analyses in this paper using this
threshold.

10Examples of keywords that we use to identify the primary technology for these plants are in Table 1.
11Discussions with hiring HR managers suggest that plants that do not include clearly identifiable tech-

nologies in their job postings do so mainly because job applicants would know what kind of jobs are offered.
They may be familiar in the local labor market, are familiar companies, or by visiting the website of the
posting plant. Most plants do not include identifiable technologies, so we opted to omit these plants from
our analysis and focus on plants with clearly identifiable technologies. As robustness checks, we visited the
websites of 50 general plants and were able to identify their technologies and included them in analyses that
showed no change in the findings.
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take the most frequent plant-level 3-digit NAICS code from other plants within the same

parent firm. Third, we match firms in the BGT dataset with Compustat to obtain parent

firm-level NAICS codes. For firms where all plants do not have a NAICS code, we assign

a parent firm-level 3-digit NAICS code that we obtain from the matching process.12 We

restrict our analytical sample to core manufacturing industries in NAICS codes 32 and 33.13

Thus, our sample consists of primarily wood, chemical, plastic, rubber, metal processing,

and electronic manufacturing plants.

Finally, we identify the commuting zone for each plant to obtain local market size

data.14 Based on this procedure, our analytical sample consists of 729,220 manager and ETO

job postings from 9,816 plants. The number of plants included in our analytical sample by

technology is identified in the first row of Table 2.

3.2 Measures

Our key outcome variables consist of plant-level measures of division of labor, special-

ization, and span of control. BGT identifies and cleans the job title for each job posting. A

cleaned job title may appear as ”Maintenance Technician” or ”Production Supervisor”. We

use these job titles to construct a measure of division of labor by calculating the number

of unique ETO job titles in a plant. The greater number of unique job titles indicates that

workers are organized into more jobs, implying more detailed division of labor. However,

more unique job titles may also be simply due to more job postings advertised by the same

plant. Thus, we normalize this measure by dividing the number of unique ETO job titles by

the number of ETO job postings.15

To measure specialization in a plant, we remove duplicate terms–which we refer to

12Some additive manufacturing plants have no NAICS associated with any job postings because they are
service bureaus (contract manufacturers) that serve multiple industries (Ben-Ner et al., 2023). We assigned
these plants to NAICS 33.

13We exclude NAICS 31 since these are ”establishments that transform materials or substances into new
products by hand or in the worker’s home and those engaged in selling to the general public products made
on the same premises from which they are sold, such as bakeries, candy stores, and custom tailors” and may
use different manufacturing processes (United States Census Bureau, 2023).

14We match the county Federal Information Processing System (FIPS) codes in our dataset with Autor
and Dorn’s (2013) commuting zone dataset File [E7] in https://www.ddorn.net/data.htm.

15As a robustness check, we also calculate the number of unique skillsets. Each measure has its limitations.
Job titles are highly unstructured, and it is difficult to determine whether two different but similar job titles
from the same plant are essentially the same job. For example, in one plant machinist job postings are split
based on levels into Machinist Level I and Machinist Level II, whereas in another plant, they are split based
on work shifts into first and second shifts. It is almost impossible to manually determine whether similarly
titled jobs are essentially the same. On the other hand, skillsets are more standardized, but two different
jobs may have the same skillset due to high similarity in how they are advertised. The two measures thus
overcome each other’s limitations.
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as tasks and skills, calculate the number of unique terms, and divide it by the number of

unique job titles.16 The greater this number in a plant, on average, the deeper and wider is

specialization. Finally, our main span of control measure is the ratio of the number of ETO

job postings to the number of technical manager job postings in a plant. A higher ratio

implies a broader span of control.17

Our key independent variable, primary technology, is a vector of dummy variables for

six production technologies. We do not directly measure flexibility, length, and integration

of each production technology but measure their direct consequences: complexity and inter-

dependence. We construct these measures by using the standard procedure in this literature,

matching terms in job postings to a list of keywords that capture the measures of interest.18

To construct our key measure of complexity, we develop a list of keywords to classify terms

in ETO job postings into nonroutine analytic (e.g., “research”, “analytical skills”, and “root

cause analysis”), routine cognitive (e.g., “calculation”, “data entry”, and “record keeping”),

nonroutine manual (e.g., “equipment repair”, “auto repair,” and “engine repair”), and rou-

tine manual (e.g., “hand tools,” “forklift operation,” and “machine operation”). We then

calculate the plant-level frequency of tasks and skills in each category and divide the num-

ber by the total number of tasks and skills to obtain four measures of intensity.19 From

these categories, we construct two aggregate measures. Cognitive complexity intensity is the

difference between nonroutine analytic intensity and routine cognitive intensity, and man-

ual complexity intensity is the difference between nonroutine manual intensity and routine

manual intensity. Finally, the overall complexity intensity is the sum of cognitive complexity

intensity and manual complexity intensity.20

We perform the same steps to construct our key measure of task interdependence, i.e.,

the overall interdependence intensity. Based on our list of keywords, tasks and skills among

ETO job postings are classified into reciprocal (e.g., “teamwork/collaboration,” “mentor-

ing,” and “negotiation skills”) and sequential interdependence (e.g., “quality assurance and

control,” “leadership,” and “supervisory skills”). Then, overall interdependence intensity is

constructed by adding reciprocal and sequential interdependence intensity.

16These are words such as ”packaging” or phrases such as ”communication skills” and ”supply chain
knowledge”, as well as technical skills that refer to brand names, such as ”Oracle”, or tools, such as ”rubber
mallets”. We combine tasks (i.e., what a worker does) and skills (i.e., what a worker needs to know) together
since we cannot distinguish them.

17As a robustness check, we also calculate the ratio of indirect employees to non-technical managers and
the ratio of engineers to operators, which results will be explained later.

18See references in the Data subsection above.
19For example, if a plant has two ETO postings and each consists of two nonroutine analytic and two

other tasks and skills, then the plant-level nonroutine analytic intensity is 50 percent.
20We use concepts and keywords developed in the literature cited above.
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Unionization could affect how a plant is organized. For example, our data shows

that subtraction has a larger union rate, whereas additive manufacturing has one of the

lowest union rates, perhaps due to larger fractions of workers are highly skilled. Thus, more

unionization in subtraction may confound our findings of less complexity—and hence less

division of labor and specialization and wider span of control—in this technology. To address

this concern, we match plants in the BGT dataset with a list of establishments that submit

Form LM10 obtained from the Office of Labor Management Standards to construct a dummy

that indicates whether a plant is unionized. 21

Table 2: Descriptive statistics of key variables

Variable
Primary technology

Subtraction Forming Molding AM Chemical Assembly
Number of plants 5,361 703 305 99 2,458 890

Number of postings per plant
93.96

(175.82)
72.33
(92.20)

82.11
(169.22)

161.08
(297.32)

270.59
(659.55)

110.23
(267.63)

Complexity
-7.64
(9.31)

-5.10
(7.92)

-3.86
(6.34)

3.70
(7.79)

-1.78
(8.59)

-1.23
(10.57)

Reciprocal interdependence
2.63
(2.45)

3.09
(2.53)

2.54
(2.45)

3.77
(2.52)

3.16
(2.23)

2.34
(1.80)

Sequential interdependence
2.95
(2.45)

3.65
(2.94)

4.22
(2.62)

2.81
(2.38)

4.04
(2.73)

2.99
(2.38)

Number of unique job titles/ETO posting
0.62
(0.19)

0.60
(0.19)

0.61
(0.17)

0.71
(0.17)

0.67
(0.19)

0.66
(0.18)

Number of unique tasks and skills/job title
5.25
(2.71)

5.40
(2.53)

4.37
(2.13)

5.74
(1.97)

6.02
(2.86)

6.31
(2.88)

Ratio of ETOs to technical managers
14.01
(15.98)

12.74
(11.36)

14.06
(14.98)

8.34
(7.68)

7.41
(8.80)

10.19
(10.21)

Notes: Means and standard deviations (in parentheses) are shown, except for the number of plants. Vari-
ables are calculated for engineer, technician, and operator (ETO) job postings in 9,816 plants with a main
NAICS 32 or 33. The ratio of ETOs to technical managers is calculated from 7,076 plants due to some
plants not having technical manager job postings, causing indivisible values. Complexity = nonroutine an-
alytical intensity – routine cognitive intensity + nonroutine manual intensity – routine manual intensity.
Interdependence = reciprocal interdependence intensity + sequential interdependence intensity.

Descriptive statistics for the key measures are presented in Table 2. The most complex

technology is additive manufacturing, followed by assembly and chemical, whereas subtrac-

tion is the least complex. Notably, complexity takes negative values when routine cognitive

and manual tasks are greater than nonroutine tasks. Only additive manufacturing has a

positive value, indicating higher nonroutine than routine tasks, whereas the other five tech-

nologies comprise of mainly manual tasks. Moreover, most technologies, except additive

manufacturing, have greater sequential interdependence intensity, although the differences

are not statistically significant. The three more complex technologies (i.e., additive manufac-

turing, chemical, and assembly) have more detailed division of labor, deeper specialization,

21Most of the unionized plants are in the general multi-technology category.
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and narrower span of control. The relative magnitudes of these measures across technologies

conform with our expectations.

Table 3: Correlation matrix
Variable Mean (SD) 1 2 3 4 5

1. Complexity
-5.18
(9.52)

1

2. Reciprocal interdependence
2.78
(2.37)

0.107 1

3. Sequential interdependence
3.31
(2.61)

0.103 0.061 1

4. Number of unique job titles/ETO posting
0.64
(0.19)

0.171 0.066 0.059 1

5. Number of unique tasks and skills/job title
5.53
(2.77)

0.227 0.031 0.037 0.071 1

6. Ratio of ETOs to technical managers
11.58
(13.64)

-0.195 -0.054 -0.056 -0.206 -0.288

Notes: Means and standard deviations are calculated from 9,816 plants. Correlations are calculated from
7,076 plants due to some plants not having technical manager job postings causing indivisible values. Com-
plexity = nonroutine analytical intensity – routine cognitive intensity + nonroutine manual intensity – rou-
tine manual intensity. Interdependence = reciprocal interdependence intensity + sequential interdependence
intensity. All correlations are significant at p < .01.

Table 3 shows correlations among key variables in our model for all observations without

distinction of technologies. The correlations (all statistically significant at p < .01) are

consistent with our predictions. Plants with higher complexity and interdependence exhibit

greater division of labor (rcomplexity = .171, rreciprocal = .066, rsequential = .059), deeper and

wider specialization (rcomplexity = .227, rreciprocal = .031, rsequential = .037), and narrower

span of control (rcomplexity = −.195, rreciprocal = −.054, rsequential = −.056). This provides

initial support for our hypotheses.

4 How technology affects complexity, interdependence,

and the organization of work

To test the theoretical framework (Figure 1), we use multicategorical structural equa-

tion modeling (SEM). This approach is a mediation analysis in which we analyze whether

complexity and interdependence mediates the effect of six distinct technologies on division of

labor, specialization, and span of control. We cluster standard errors at the parent firm level

to account for the nested structure of plants within a firm, violating the OLS assumption

that observations are independent. Our data is structured at two levels. Plant level variables

consist of a vector of technology dummy variables, complexity, interdependence, a vector of
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automation variables, plant size, local market size, union coverage, and 3-digit NAICS fixed

effects, whereas parent firm level variable is the parent firm’s size. We use standardized mea-

sures except for technology, union coverage, and NAICS fixed effects due to large differences

in scales among variables in our model, which may cause SEM’s estimation algorithm to be

dominated by variables with larger variances. As our independent variable is categorical,

we set subtraction as the reference group. Therefore, we describe the effects of the other

technologies relative to subtraction in standardized measurement.22

We provide below the rationale for including several control variables in our analysis.

First, our outcome variables may be directly impacted by the level of automation (as found in

the literature reviewed earlier).23 As different types of automation may affect our outcome

variables differently, we construct six measures of automation.24 Second, plant size may

affect our outcome variables (as the abovementioned literature has argued).25 We measure

plant size by the number of all job postings in a plant. Third, each firm may have a different

policy regarding the organization of work in plants that it owns. We measure the parent

firm’s size by the number of plants that the parent firm of a plant owns. Fourth, we include

plant union coverage because different rates of unionization in different technologies might

be the source of differences in how a plant is organized.26

Fifth, technological choice may be endogenous. A plant chooses a particular technology

22See Hayes and Preacher (2014) for a discussion on mediation analysis with a multicategorical independent
variable.

23For instance, automation of routine tasks may reduce human tasks in routine cognitive and routine
manual, increase complexity, and inflate its effect on the three outcome variables. Automation also decreases
communication and coordination costs, such as in the case of a conveyor belt that moves work-in-process,
which reduces the need for workers in the production line to interact with each other. This increases
their productivity of the remaining tasks and leads to narrower specialization. However, automation may
also create new tasks in which labor has a comparative advantage (Acemoglu and Restrepo, 2019), thus
broadening their task scope (deeper and wider specialization).

24We split automation into ones that affect the entire process, pre-production and production. Automation
in the pre-production phase, which is more conceptual, may complement workers’ tasks and create a broader
range of tasks, whereas production automation, which is more operational, tends to replace human tasks and
lead to greater specialization. We rely on BGT-annotated skill clusters to classify types of automation. The
entire process automation is divided into primary (i.e., skill clusters “Automation Engineering”, “Machine
Learning”, and “Artificial Intelligence”), secondary (i.e., “Big Data”), and tertiary (i.e., “IT Automation”);
pre-production automation contains tasks and skills from skill clusters “Drafting” and “Engineering Design”;
and production automation is split into primary (i.e., “Computer Aided Manufacturing”) and secondary (i.e.,
“Circuitry”).

25Larger plants have more resources and they need more specialized workers to handle various tasks and
responsibilities as a result of larger operations.

26As mentioned above, we use form LM10 to identify plants covered by unions. We acknowledge that form
LM10 includes all transactions (payments and arrangements) from an employer to a union or officer, agent,
shop steward, employee, or other representative of a union. This transaction may not always indicate the
existence of labor union. Moreover, this dataset is at the firm-city level. However, unions may only cover
certain occupations within a plant.
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based on what kind of product it produces. Thus, comparing technologies should control

for product characteristics. This cannot be achieved using the available data as there is

no information on product varieties. We address this concern by controlling a plant’s main

3-digit NAICS. Finally, per Smith (1786) that division of labor is affected by the extent of

the market, we control for the local market size, as measured by the working age population

of the commuting zone in which a plant is located.

4.1 Complexity

The SEM estimation result is shown in Table 4. The model demonstrates a good fit as

SRMR and CFI are within acceptable levels (i.e., SRMR < .08 and CFI > .90).27 Column

1 shows technology heterogeneity on complexity. All coefficients for complexity are positive

and highly significant, indicating that subtraction is the least complex technology. Further

inspection indicates that additive manufacturing has the greatest complexity among the

six technologies. Columns 3, 4, and 5 show the relationships between complexity and key

outcome variables, the second path of the role of complexity as a mediator. We find that

complexity is positively associated with the number of unique job titles per ETO posting

(implying more detailed division of labor), positively associated with the number of tasks and

skills (implying deeper specialization), and negatively associated with the ratio of ETOs to

technical managers (implying narrower spans of control, particularly for technical employees).

Finally, supporting Hypothesis 1, we find that all relative indirect effects of technology

on division of labor, specialization, and span of control through complexity are highly sig-

nificant, implying that differential levels of division of labor among the six technologies can

be attributed to complexity. Moreover, additive manufacturing is strikingly different from

the other technologies.

4.2 Task interdependence

We find mixed findings—-but are generally consistent with our technology characterization—-

for task interdependence. Additive manufacturing and forming have more reciprocally inter-

dependent tasks than subtraction, whereas molding and chemical are comparable (column

2). As for the second path, reciprocal interdependence can explain the variability in division

of labor and specialization, but is not significant in explaining span of control. Molding and

27We do not rely on RMSEA since our multilevel mediation model has small degrees of freedom (df). In
small df models, RMSEA should be used with caution as it too often falsely indicates a poor fitting model
(Kenny et al., 2015), and SRMR and CFI should be relied more as they are less susceptible to small df (Shi
et al., 2022).
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Table 4: Structural equation model: Effects of technology on division of labor, specialization,
and span of control through complexity and interdependence

Variable
Dependent variable:

Complexity
Reciprocal

interdependence
Sequential

interdependence
Division of labor Specialization Span of control

(1) (2) (3) (4) (5) (6)
Complexity - - - 0.143*** 0.196*** -0.125***

(0.022) (0.019) (0.016)
Reciprocal interdependence - - - 0.049*** 0.024 -0.017

(0.018) (0.016) (0.014)
Sequential interdependence - - - 0.028* 0.016 -0.013

(0.016) (0.016) (0.015)
Forming 0.253*** 0.141* 0.143 0.014 -0.110* -0.049

(0.059) (0.076) (0.091) (0.077) (0.061) (0.051)
Molding 0.369*** -0.047 0.366*** 0.008 -0.501*** 0.087

(0.069) (0.126) (0.091) (0.096) (0.076) (0.087)
AM 0.793*** 0.328** -0.037 0.318*** -0.219*** -0.146**

(0.078) (0.137) (0.124) (0.117) (0.084) (0.066)
Chemical 0.287*** 0.144 0.210*** 0.170** 0.013 -0.247***

(0.062) (0.092) (0.080) (0.085) (0.072) (0.070)
Assembly 0.258*** -0.088* -0.011 0.159** 0.069 -0.113***

(0.067) (0.045) (0.054) (0.064) (0.050) (0.039)

Indirect effects:
Forming → Complexity → DV - - - 0.036** 0.050** -0.032**

[0.022, 0.051] [0.031, 0.069] [-0.045, -0.019]
Molding → Complexity → DV - - - 0.053** 0.073** -0.046**

[0.035, 0.073] [0.050, 0.097] [-0.064, -0.031]
AM → Complexity → DV - - - 0.113** 0.156** -0.099**

[0.085, 0.144] [0.123, 0.190] [-0.126, -0.074]
Chemical → Complexity → DV - - - 0.041** 0.056** -0.036**

[0.024, 0.059] [0.034, 0.081] [-0.052, -0.021]
Assembly → Complexity → DV - - - 0.037** 0.051** -0.032**

[0.021, 0.054] [0.031, 0.071] [-0.046, -0.019]

Forming → Reciprocal interdependence → DV - - - 0.007** 0.003** -0.002
[0.001, 0.015] [0.000, 0.008] [-0.007, 0.001]

Molding → Reciprocal interdependence → DV - - - -0.002 -0.001 0.001
[-0.011, 0.006] [-0.006, 0.003] [-0.003, 0.005]

AM → Reciprocal interdependence → DV - - - 0.016** 0.008** -0.006
[0.004, 0.033] [0.001, 0.019] [-0.017, 0.003]

Chemical → Reciprocal interdependence → DV - - - 0.007** 0.004 -0.003
[0.001, 0.015] [0.000, 0.009] [-0.008, 0.001]

Assembly → Reciprocal interdependence → DV - - - -0.004** -0.002 0.002
[-0.009, -0.001] [-0.006, 0.000] [-0.001, 0.005]

Forming → Sequential interdependence → DV - - - 0.004** 0.002 -0.002
[0.000, 0.009] [-0.001, 0.007] [-0.007, 0.002]

Molding → Sequential interdependence → DV - - - 0.010** 0.006 -0.005
[0.001, 0.021] [-0.002, 0.016] [-0.016, 0.005]

AM → Sequential interdependence → DV - - - -0.001 -0.001 0.000
[-0.008, 0.005] [-0.006, 0.004] [-0.004, 0.005]

Chemical → Sequential interdependence → DV - - - 0.006** 0.003 -0.003
[0.001, 0.013] [-0.001, 0.009] [-0.009, 0.003]

Assembly → Sequential interdependence → DV - - - 0.000 0.000 0.000
[-0.003, 0.002] [-0.002, 0.002] [-0.002, 0.002]

N of plants 7,093
SRMR 0.006
CFI 0.966

Notes: Coefficients above are estimated using multicategorical structural equation modeling with the lavaan
package in R. Standard errors (in parentheses) are clustered at the parent firm level. Regression includes five
measures of automation intensity, number of postings per plant, number of plants per firm, commuting zone’s
population of working age, union status, and 3-digit NAICS as control variables. Non-unionized subtraction
plants in NAICS 33 are the reference group. All variables are standardized, except dummies for primary
technology, union status, and NAICS. Analysis is performed on plants with main NAICS 32 and 33. The
number of samples is smaller than our initial sample size due to indivisible values of span of control, as not
all plants in our sample have technical manager job postings. * p < 0.1; ** p < 0.05; *** p < 0.01.
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chemical have more sequentially interdependent tasks than subtraction, whereas forming,

assembly, and additive manufacturing are comparable. Notably, although the coefficient for

additive manufacturing is not statistically significant, it is the lowest among the other four

due to the short production process (i.e., production in a box). Sequential interdependence

is a significant mediator only for division of labor.28

As we show in the following section (Figure 3), reciprocal and sequential interdepen-

dence do not go hand in hand. A complex but short production process such as additive

manufacturing will have high reciprocal, but low sequential, interdependence. On the other

hand, a long and elaborate process, such as chemical manufacturing, will have medium-to-

high reciprocal and sequential interdependence. Forming and molding have clear, specific

steps, in which production follows a particular sequence, thus exhibiting low reciprocal but

high sequential interdependence.

In sum, our findings suggest that (1) reciprocal and sequential interdependence are

associated with variations in division of labor, (2) reciprocal and sequential interdependence

explain the mechanism through which different technologies have different extents of division

of labor (i.e., Hypothesis 2(a) is supported), (3) only reciprocal interdependence that is

significant in explaining specialization (i.e., Hypothesis 2(b) is weakly supported), and (4)

we do not find evidence for the role of both task interdependence in mediating the effect of

technology on span of control (i.e., Hypothesis 2(c) is not supported).

Although Table 4 does not show coefficients for control variables, several are poten-

tially important in affecting the key outcomes.29 Our study shows that automation across

the entire process (primary) and in pre-production is positively associated with overall com-

plexity and negatively associated with interdependence.30 Primary production automation

has negative associations with plant complexity, whereas secondary production automation

has a positive effect.31 We also find that larger plants are associated with more complexity

and interdependence. Lastly, our findings support the notion that the extent of the market

limits that division of labor (in a broad sense) as local market size is associated with more

detailed division of labor (narrowly defined as job titles), deeper specialization, and narrower

span of control.

28We follow Hayes and Preacher (2014) that suggest ”[e]vidence that at least one relative indirect effect is
different from zero supports the conclusion that M mediates the effect of X on Y .”

29See Appendix Table A2 for covariate coefficients obtained from structural equation model estimation.
30Perhaps because this type of automation enhances human tasks, which shifts workers to more complex

tasks and consequently increases their job complexity but also reduces sequential interdependence.
31Perhaps due to different levels of adoption of the two types of automation across technologies. Computer

adaptive manufacturing is primarily used in subtraction, whereas circuitry in assembly plants. Investigation
of the effects of different types of automation on the organization of work is the focus of a companion study.
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5 Heterogeneity of technology

Our findings above demonstrate that technologies differ in their levels of complexity

and interdependence, which further affects how workers are organized. The following sections

provide a more detailed examination of each production technology. We first investigate how

each technology differs regarding complexity and task interdependence, and later discuss the

implications for division of labor, specialization, and span of control. We regress the outcome

variables on production technologies with the same control variables as the previous model

and introduce more detailed measures to investigate the source of variation further. Finally,

standard errors in the following models are clustered at the parent firm’s level to consider

dependency of observations from the same firm.

5.1 Technology and plant complexity

Table 5: Regression analysis of complexity on primary technology

Variable
Dependent variable:

Number of unique
terms/ETO posting

Cognitive complexity Manual complexity Overall complexity

(1) (2) (3) (4) (5) (6) (7) (8)
Forming -0.059 -0.024 -0.419* 0.357* 2.957*** 1.766*** 2.741*** 2.123***

(0.140) (0.111) (0.239) (0.210) (0.430) (0.383) (0.559) (0.471)
Molding -0.611*** -0.657*** -0.765*** -0.098 4.545*** 3.118*** 3.837*** 3.020***

(0.157) (0.130) (0.254) (0.238) (0.509) (0.523) (0.531) (0.595)
AM 0.793*** 0.264 5.268*** 3.785*** 6.078*** 3.534*** 10.935*** 7.319***

(0.182) (0.185) (0.901) (0.668) (0.580) (0.570) (1.154) (0.825)
Chemical 0.782*** 0.306* -0.245 -0.074 6.105*** 3.571*** 5.244*** 3.498***

(0.170) (0.171) (0.271) (0.341) (0.778) (0.789) (0.827) (0.852)
Assembly 0.864*** 0.347*** 4.245*** 2.312*** 2.163*** -0.779*** 6.275*** 1.533***

(0.111) (0.116) (0.428) (0.403) (0.307) (0.295) (0.624) (0.572)
Control variables No Yes No Yes No Yes No Yes
Observations 9,816 9,816 9,816 9,816 9,816 9,816 9,816 9,816
R2 0.041 0.127 0.081 0.264 0.126 0.265 0.107 0.284
Adjusted R2 0.040 0.124 0.080 0.262 0.126 0.263 0.106 0.282

Notes: Standard errors (in parentheses) are clustered at the firm level. All regressions include five measures of
automation intensity, number of postings per plant, number of plants per firm, commuting zone’s population
of working age, union status, and 3-digit NAICS as control variables. Subtraction is the reference group.
Sample includes 9,816 plants (703 forming plants, 305 molding plants, 5,361 subtraction plants, 99 AM
plants, 2,458 chemical plants, and 890 assembly plants. Cognitive complexity = nonroutine analytic intensity
– routine cognitive intensity. Manual complexity = nonroutine manual intensity – routine manual intensity.
Overall complexity = cognitive complexity + manual complexity. The intensity measures are constructed
by dividing the number of ETO tasks and skills related to each complexity category divided by the total
number of ETO tasks and skills in a plant, taking into account the frequency of each task/skill. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

Table 5 shows the association of production technologies with plant complexity. We

estimate four measures of complexity: the number of plant-level unique terms normalized by
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the number of ETO postings, cognitive and manual complexity measures, and their aggre-

gates. Technologies exhibit a wide variation in complexity, as indicated by the significance

of the majority of technology coefficients, even after controlling several variables–plant size,

parent firm’s size, local market size, union coverage, and product variety. The first measure

indicates the heterogeneity of skills and tasks performed in a plant. A more complex plant

will have more heterogenous terms in its job postings due to more variety of tasks performed

and skills required to perform them. Our alternative measures of complexity generally show

consistent results.

Supporting our prediction, additive manufacturing, chemical, and assembly are techno-

logically more complex with more diverse plant-level unique tasks and skills. This variation

becomes weaker after introducing covariates, but the signs remain consistent (column 2).

With respect to our key measure of complexity, columns (7) and (8) show that relative to

subtraction, the other five technologies have higher levels of overall complexity, with addi-

tive manufacturing exhibiting the highest level. The magnitudes decrease and R2 shows a

meaningful increase after covariates are introduced, indicating plant-level complexity is a

mix of various factors, and yet technologies have incremental validity over the others. The

cognitive and manual components show more variations [columns (3)-(6)]. Only additive

manufacturing and assembly consistently show high cognitive complexity, whereas the other

three technologies exhibit equal or lower levels compared to subtraction. Manual complexity

shows more consistent results, albeit the coefficient for assembly switch signs after intro-

ducing covariates.32 Next, we proceed to depict the predicted value of complexity in each

technology, holding the covariates at their mean values. Hence, Figure 2 below shows the

predicted value of complexity for typical plants in each technology.

Panel (a) visualizes the predicted values of cognitive and manual complexity. Additive

manufacturing has the highest cognitive complexity intensity with nonroutine cognitive being

five percent more frequent than routine cognitive terms. On the other end, molding and

chemical have almost equal intensity of nonroutine and routine cognitive complexity terms.

Subtraction and assembly have the lowest manual complexity intensity, with larger than

ten percent of terms associated with more routine than nonroutine manual tasks.33 Panel

(b) depicts the predicted values of the number of unique tasks and skills, estimated from

column 2 of Table 5. The values represent the expected number of unique tasks and skills

32Perhaps, this is due to assembly plants being highly automated, which increases their process complexity.
After controlling for five automation intensity measures, the remaining complexity explainable by production
technology becomes much lower. This highlights the importance of controlling levels of automation in
examining manufacturing technologies, as the two are closely intertwined.

33As we mentioned above, the negative values exist because there are higher numbers of tasks and skills
related to routine manual—-the subtrahend for manual complexity-—than nonroutine manual.

20



Figure 2: Predicted values of plant complexity

(a) Number of unique tasks
and skills/ETO posting

(b) Cognitive and manual complexity

Notes: Panel (a) is based on model (2), and panel (b) on models (4) and (6) in Table 5. Each point represents
a predicted value for each technology while keeping other variables (i.e., intensity of automation, number
of job postings per plant, parent firm’s number of plants, and commuting zone’s working age population)
at their mean values. Whiskers represent 95-percent confidence intervals based on robust standard errors
clustered at the parent firm level. The sample includes 9,816 plants (703 forming plants, 305 molding plants,
5,361 subtraction plants, 99 AM plants, 2,458 chemical plants, and 890 assembly plants) within NAICS 32
and 33. Cognitive complexity = nonroutine analytic – routine cognitive; more positive values indicate more
nonroutine analytic task intensity at the plant level. Manual complexity = nonroutine manual – routine
manual; more negative values indicate more routine manual task intensity at the plant level.

in each technology for the average levels of automation intensity, plant size, parent firm’s

size, and local market size. The order of values is generally consistent with our technology

characterization in Table 1, based on which additive manufacturing, chemical, and assembly

have more tasks and skills relative to forming, molding, and subtraction.

The findings suggest that additive manufacturing is among the most complex tech-

nologies. We also find that assembly requires comparatively more tasks and skills that are

cognitively complex but also manually routinized. We interpret this as due to these plants

being technologically advanced with the application of robots on the shop floor, such as in

microchip or car assembly plants (e.g., Krzywdzinski, 2021).

5.2 Technology and task interdependence

We now examine the determinants of the two types of interdependence, sequential and

reciprocal. Table 3 indicates that task interdependence and complexity are correlated. A

simple process requires fewer interactions, in which an output of a worker becomes an in-

put for another, thus exhibiting sequential interdependence. In contrast, in a more complex
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process, more workers need to work together to accomplish a common goal, and their jobs

require more back and forth interactions with coworkers. Thus, more complex technologies

will have higher reciprocal interdependence than—-but comparable sequential interdepen-

dence with—-less complex technologies. Table 6 and Figure 3 show the regression results

and predicted values for the effects of technologies on task interdependence measures, re-

spectively.

Table 6: Regression analysis of task interdependence on primary technology

Variable
Dependent variable:

Reciprocal
interdependence

Sequential
interdependence

Overall
interdependence

(1) (2) (3) (4) (5) (6)
Forming 0.457* 0.396 0.702*** 0.549*** 1.159*** 0.945***

(0.249) (0.259) (0.216) (0.171) (0.238) (0.227)
Molding -0.097 -0.185 1.272*** 1.095*** 1.175*** 0.911***

(0.321) (0.341) (0.300) (0.295) (0.186) (0.209)
AM 1.137** 1.157*** -0.140 -0.187 0.997*** 0.970***

(0.459) (0.442) (0.409) (0.400) (0.289) (0.293)
Chemical 0.526* 0.271 1.088*** 0.617*** 1.614*** 0.888***

(0.314) (0.338) (0.141) (0.199) (0.242) (0.220)
Assembly -0.298** -0.146 0.044 -0.011 -0.253** -0.156

(0.148) (0.150) (0.092) (0.094) (0.105) (0.114)
Control variables No Yes No Yes No Yes
Observations 9,816 9,816 9,816 9,816 9,816 9,816
R2 0.015 0.035 0.037 0.053 0.041 0.064
Adjusted R2 0.015 0.032 0.036 0.050 0.040 0.061

Notes: Standard errors (in parentheses) are clustered at the firm level. All regressions include five measures of
automation intensity, number of postings per plant, number of plants per firm, commuting zone’s population
of working age, union status, and 3-digit NAICS as control variables. Subtraction is the reference group.
Sample includes 9,816 plants (703 forming plants, 305 molding plants, 5,361 subtraction plants, 99 AM plants,
2,458 chemical plants, and 890 assembly plants. Overall interdependence = reciprocal interdependence +
sequential interdependence. The intensity measures are constructed by dividing the number of ETO tasks
and skills related to each interdependence category divided by the total number of ETO tasks and skills in
a plant, taking into account the frequency of each task/skill. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The regression table indicates that additive manufacturing is the most reciprocally

interdependent technology, whereas the other five technologies are comparably similar to

subtraction. On the other hand, forming, molding, and chemical are sequentially more

interdependent, whereas additive manufacturing and assembly are comparable to subtrac-

tion. Finally, the overall interdependence measure indicates that chemical, forming, molding,

and additive manufacturing have significantly higher levels of interdependence, whereas as-

sembly is lower than subtraction. Figure 3 shows that most technologies have overlapping
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confidence intervals of reciprocal interdependence intensity, yet additive manufacturing still

has the highest predicted values of between 3 to 5 percent. On the other hand, two complex

technologies (i.e., additive manufacturing and assembly) have comparably lower sequential

interdependence than forming, molding, and assembly. We discuss further our interpreta-

tions of these findings below.

Figure 3: Predicted values of task interdependence

Notes: Figures are based on models (2) and (4) in Table 6. Each point represents a predicted value for
each technology while keeping other variables (i.e., intensity of automation, number of job postings per
plant, parent firm’s number of plants, and commuting zone’s working age population) at their mean values.
Whiskers represent 95-percent confidence intervals based on robust standard errors clustered at the parent
firm level. The sample includes 9,816 plants (703 forming plants, 305 molding plants, 5,361 subtraction
plants, 99 AM plants, 2,458 chemical plants, and 890 assembly plants) within NAICS 32 and 33.

In general, we find that the pattern of task interdependence is more nuanced. The

results support the conclusion that more complex technologies are reciprocally more interde-

pendent, and sequential interdependence also shows meaningful variations across technologies

that goes on the opposite direction. Additive manufacturing has a shorter process and thus

sequentially less interdependent; chemical manufacturing requires a long, elaborate process

to perform chemical reactions and purification, each needs to be carried out in a specific

order, and thus it has higher sequential interdependence; forming and molding (collectively

termed netshape processes) are performed in steps that adhere to a specific order, and con-

sequently, tasks are more sequentially interdependent. Finally, subtraction and assembly

exhibit comparable sequential interdependence to additive manufacturing. We interpret this

as a consequence of more automation and machinery implemented in the two technologies

(e.g., robotic arms in assembly and CNC in subtraction), which makes labor tasks to be more

independent. In sum, these findings demonstrate that the two types of interdependence must

be considered separately as they may not go hand in hand.
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5.3 Technology, division of labor, and specialization

Plant complexity has implications on how jobs are organized in a plant. More complex

technologies require more parameters to adjust and more diverse and cognitively complex

skills and tasks for workers. In turn, they require more jobs to carry out the tasks while

simultaneously more tasks and skills are bundled in a job. Table 7 indicates that manufac-

turing technologies vary in how jobs are designed. As discussed above, plants with more

complex technologies consist of more diverse (i.e., unique) tasks and skills. Not surprisingly,

these plants also organize workers in more jobs, and each job consists of more tasks and skills.

Additive manufacturing, chemical, and assembly have more unique jobs than subtraction,

as measured by unique job titles (column 2) and skillsets (column 4). The average job in

these three technologies also consists of more unique tasks and skills relative to subtraction

(i.e., deeper specialization). Forming is similar to subtraction with respect to the number

of unique tasks and skills per job title, whereas the coefficient for molding is significantly

lower. Substituting unique skillsets for unique job titles yields similar results.

Table 7: Regression analysis of division of labor and specialization on primary technology

Variable

Dependent variable:
Division of labor Specialization

Number of unique job
titles/ETO posting

Number of unique
skillsets/ETO posting

Number of unique
tasks and skills/job title

Number of unique
tasks and skills/skillset

(1) (2) (3) (4) (5) (6) (7) (8)
Forming -0.028* -0.001 -0.019 0.001 0.146 -0.042 0.056 -0.043

(0.015) (0.013) (0.014) (0.012) (0.196) (0.159) (0.164) (0.133)
Molding -0.011 0.006 -0.033** -0.025 -0.886*** -1.102*** -0.726*** -0.839***

(0.016) (0.016) (0.016) (0.016) (0.225) (0.197) (0.194) (0.164)
AM 0.084*** 0.069*** 0.070*** 0.042** 0.487* -0.186 0.711*** 0.157

(0.020) (0.020) (0.020) (0.020) (0.258) (0.229) (0.205) (0.200)
Chemical 0.041*** 0.037** 0.057*** 0.049*** 0.766*** 0.070 0.645*** -0.0004

(0.013) (0.015) (0.014) (0.015) (0.173) (0.210) (0.171) (0.197)
Assembly 0.033*** 0.025** 0.056*** 0.031*** 1.058*** 0.325** 0.834*** 0.257**

(0.011) (0.012) (0.010) (0.011) (0.132) (0.130) (0.108) (0.112)
Control variables No Yes No Yes No Yes No Yes
Observations 9,816 9,816 9,816 9,816 9,816 9,816 9,816 9,816
R2 0.015 0.040 0.026 0.061 0.026 0.123 0.023 0.118
Adjusted R2 0.014 0.038 0.026 0.059 0.026 0.120 0.023 0.116

Notes: Standard errors (in parentheses) are clustered at the firm level. All regressions include five measures of
automation intensity, number of postings per plant, number of plants per firm, commuting zone’s population
of working age, union status, and 3-digit NAICS as control variables. Subtraction is the reference group.
Sample includes 9,816 plants (703 forming plants, 305 molding plants, 5,361 subtraction plants, 99 AM
plants, 2,458 chemical plants, and 890 assembly plants). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure 4 depicts the predicted values of division of labor and specialization from

columns (2), (4), (6), and (8) of Table 7. A consistent pattern emerges from the four

panels. More complex technologies are also characterized by greater division of labor (i.e.,

more unique job titles and unique skillsets per ETO job posting) and deeper and wider
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specialization (i.e., more tasks and skills per job title or skillset), although the 95-percent

confidence intervals highly overlap. Around 55 to 60 percent of ETO job postings in all

technologies are unique, and an average ETO job consists of around four to five tasks and

skills.

Figure 4: Predicted values of division of labor and specialization

Notes: Division of labor figures (i.e., top figures) are based on models (2) and (4), and specialization
figures (i.e., bottom figures) on models (6) and (8) in Table 7. Each point represents a predicted value
for each technology while keeping other variables (i.e., intensity of automation, number of job postings per
plant, parent firm’s number of plants, and commuting zone’s working age population) at their mean values.
Whiskers represent 95-percent confidence intervals based on robust standard errors clustered at the parent
firm level. The sample includes 9,816 plants (703 forming plants, 305 molding plants, 5,361 subtraction
plants, 99 AM plants, 2,458 chemical plants, and 890 assembly plants) within NAICS 32 and 33. A skillset
is a string of terms annotated by Burning Glass Technology that reflects the content of a job posting.

Collectively, these findings support our classification of production technologies with

respect to division labor and specialization. First, we find that more jobs are designed in

plants with more complex technologies, evidence of more detailed division of labor. Second,

workers in highly complex technologies need to attend to multifaceted parameters, which

tend to increase the number of tasks they perform and skills with which they are equipped.

More tasks and skills are thus bundled into a job for workers in these plants, evidence of

deeper and wider specialization in more technologically complex plants.

5.4 Technology and span of control

We predict that plant complexity is negatively associated with the number of sub-

ordinates an average manager supervises. Table 8 shows that more complex technologies
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have narrower spans of control; additive manufacturing and chemical exhibit lower ratios

of non-managers to managers relative to subtraction (column 2). Further investigation re-

veals that this variation stems from core manufacturing employees (i.e., technical managers,

engineers, technicians, and operators; column 4). On the other hand, the coefficients for

indirect employees to non-technical managers show weaker significance, implying less varia-

tion across technologies (column 6). Finally, more complex technologies are also associated

with higher ratios of engineers to operators, indicating more high-skilled workers needed to

support operators in more technologically complex plants (column 8).

Table 8: Regression analysis of span of control on primary technology

Variable
Dependent variable:

Ratio of non-managers
to all managers

Ratio of ETOs
to technical managers

Ratio of indirect employees
to non-technical managers

Ratio of engineers
to operators

(1) (2) (3) (4) (5) (6) (7) (8)
Forming -0.584 -1.268* -1.263* -1.153* -0.028 -1.418** 0.378** 0.663***

(0.843) (0.764) (0.685) (0.701) (0.927) (0.670) (0.185) (0.182)
Molding 1.515 1.429 0.054 0.506 -0.166 -0.958 -0.351*** -0.142

(1.506) (1.389) (1.113) (1.216) (0.726) (0.828) (0.084) (0.104)
AM -4.628*** -2.576*** -5.666*** -3.405*** -1.768*** -1.357** 3.931*** 3.239***

(0.830) (0.799) (0.930) (0.913) (0.681) (0.680) (0.917) (0.836)
Chemical -4.346*** -2.120*** -6.599*** -3.923*** -0.849* -0.703 1.024*** 0.504

(0.627) (0.685) (0.639) (0.965) (0.481) (0.589) (0.169) (0.330)
Assembly -2.731*** -0.787 -3.817*** -1.950*** -1.201** -0.755 2.131*** 1.339***

(0.660) (0.641) (0.530) (0.537) (0.542) (0.541) (0.286) (0.280)
Control variables No Yes No Yes No Yes No Yes
Observations 8,237 8,237 7,076 7,076 7,123 7,123 9,536 9,536
R2 0.024 0.060 0.046 0.071 0.002 0.027 0.046 0.102
Adjusted R2 0.023 0.056 0.046 0.067 0.002 0.023 0.046 0.099

Notes: Standard errors (in parentheses) are clustered at the firm level. All regressions include five measures
of automation intensity, number of postings per plant, number of plants per firm, commuting zone’s popula-
tion of working age, union status, and 3-digit NAICS as control variables. Subtraction is the reference group.
The number of samples for each dependent variable differs due to indivisible values. Technical managers
include job postings with SOC codes 11-1021 (General and Operations Managers), 11-3021 (Computer and
Information Systems Managers), 11-3051 (Industrial Production Managers), 11-3061 (Purchasing Managers),
11-3071 (Transportation, Storage, and Distribution Managers), 11-9013 (Farmers, Ranchers, and Other Agri-
cultural Managers), 11-9021 (Construction Managers), 11-9041 (Architectural and Engineering Managers),
11-9111 (Medical and Health Services Managers), and 11-9121 (Natural Sciences Managers). Non-technical
managers include SOC code 11 other than technical managers. All managers include technical and non-
technical managers. Non-managers include job postings other than managers. Indirect employees include
job postings other than managers, engineers, technicians, and operators. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure 5 illustrates the predicted values of span of control measures calculated from

columns (2), (4), (6), and (8) of Table 8. A technical manager in an average subtraction plant

can supervise almost 1.5 as many ETOs as a chemical plant and an additive manufacturing

plant. On the other hand, the confidence intervals for the ratio of indirect employees to

non-technical managers highly overlap, indicating less impact of technology to occupations

not directly related to the production process. Eight indirect employees are supervised

by an average manager in all technologies. Finally, this figure shows that the expected
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ratios of engineers to operators for additive manufacturing and assembly are larger than

one, indicating that they require more engineers than operators. In contrast, the other lower

complex technologies show the opposite pattern.

Figure 5: Predicted values of span of control

Notes: Figures are based on models (2), (4), (6), and (8) in Table 8. Each point represents a predicted value
for each technology while keeping other variables (i.e., intensity of automation, number of job postings per
plant, parent firm’s number of plants, and commuting zone’s working age population) at their mean values.
Whiskers represent 95-percent confidence intervals based on robust standard errors clustered at the parent
firm level. The sample includes plants within NAICS 32 and 33. The number of samples for each figure
differs due to indivisible values. See Table 8 for more details.

These findings confirm our predictions that more complex technologies require narrower

spans of control. A manager’s time to oversee subordinates positively correlates with task

complexity. Consequently, the number of subordinates that can be effectively managed is

inversely related to task complexity. This aligns with our findings that there are fewer

non-managers to managers in more complex technologies. More importantly, the variability

in the cost of supervision is driven by occupations that are directly affected by the choice

of technology; the number of engineers, technicians, and operators per technical manager

is lower for these technologies. We also examine the ratio of indirect employees to non-

technical managers as a placebo test. The impact of technology should be less prevalent

for these occupations since they are not directly involved in the production process. Indeed,

Figure 5 confirms that confidence intervals for the ratio of indirect employees to non-technical

managers highly overlap across technologies. Finally, our findings suggest that operators in

more complex technologies require more support from engineers, indicating more complex

tasks in these technologies.
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6 Conclusion

In the management and organization theory literature on work, distinctions among

establishments based on complexity and interdependence of their technologies have a long

history. In the economics literature, during the last two decades the focus was on distinctions

between routine and nonroutine manual and cognitive tasks in occupations in relation to

technology represented by degrees of computerization. More recently, attention has shifted

to the effects of automation, robotics, and AI on workers’ skills. In these varied analyses,

little attention has been paid to how things are made beyond generalities such as industry,

size of operation, and rarely general attributes such as batch versus continuous processes

(ascribed but not measured).

This approach to research on the organization of work is appropriate but insufficient.

How things are made matters to how work is organized. There are several likely reasons

why management and economics researchers have yet to engage in analysis of concrete and

empirically prominent technologies. Information about production technologies is not avail-

able in datasets used in research, and their investigation draws on knowledge from other

fields. Establishment level research therefore requires a different approach to collecting and

classifying information.

Work is increasingly a topic of wide interest and concern. “The future of work” is a

frequently used phrase in academic research, policy conversations, and in exchanges among

people wondering what they will be doing in the future. We have shown in our analyses that

automation, AI, and robotics do matter, but so does the way things are made. Controlling for

automation, AI, and robotics and many other factors, we have shown that there are important

differences in division of labor, specialization, and span of control among key technologies of

production. Based on engineering literature, we identified flexibility, length, and integration

of the production process as key determinants of complexity and interdependence among

tasks, jobs and phases in the production process. Whereas we used flexibility, length, and

integration to explain work organization, we did not measure them. It is a topic that we

leave for future research. We measured, however, their presumed consequences, multiple

facets of complexity and interdependence. We also measured, in multiple ways, key aspects

of organization of work: division of labor, specialization, and span of control.

We found a strong relationship between technology of production and complexity, and

a nuanced link to sequential and reciprocal interdependence, and from there to three mea-

sures of work organization we used. Additive manufacturing, the newest of manufacturing

technologies, generally followed by chemical and assembly establishments, are the most com-
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plex and have more detailed division of labor, deeper and wider specialization, and lower

span of control. Plants that rely primarily on subtraction, the most common technology of

production, followed by those using forming and molding, are the least complex, with less

division of labor and narrower specialization, and wider span of control. We have measured

the organization of work for the combined group of technical workers–engineers, technicians,

and operators–for conciseness.

The source of the data that allowed investigating matters heretofore unexplored in

academic research in the domain of this paper is its major strength. But this source, job

vacancy postings, also has limitations. Job postings are reflections of employer demand

rather than a snapshot of what happens in a plant. We considered five years’ worth of job

postings to capture a wider cross section of jobs, but this is only a partial substitute for a

full accounting of what goes on in a plant. Another limitation is the absence of identifiable

technology of production in many postings, which forced us to look only where we can identify

the primary technology. We conducted various robustness checks, but this is a limitation

that can only be overcome with surveys and interviews with plant representatives.

Our research has identified important relationships that managers should consider in

their design of jobs along the entire production process, in hiring, and training of workers.

Our findings suggest important contingencies associated with the technology of production,

strongly advising against the idea of an optimal division of labor, specialization, or span of

control. Of course, technology of production is not the only factor that affects the organi-

zation of work. In a separate analysis not shown here, we find that automation and size

matter, too, in specific ways. In doing this, we part ways with the broad, single variable,

concept of automation, that has dominated the literature. We show that different types of

automation (including AI and robotics) in different phases of the production process have

different effects on the organization of work. This is a fertile space for future research.
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A Appendix tables

Table A1: Technological paths
Primary technology

(beginning)
Primary technology (end)

Total
AM Assembly Chemical Forming Molding Subtraction

AM
15

(83.33%)
1

(5.56%)
2

(11.11%)
0

(0.00%)
0

(0.00%)
0

(0.00%)
18

(100%)

Assembly
0

(0.00%)
34

(59.65%)
6

(10.53%)
3

(5.26%)
0

(0.00%)
14

(24.56%)
57

(100%)

Chemical
0

(0.00%)
2

(0.18%)
1,110

(98.06%)
1

(0.09%)
2

(0.18%)
17

(1.50%)
1,132
(100%)

Forming
0

(0.00%)
0

(0.00%)
6

(10.34%)
46

(79.31%)
1

(1.72%)
5

(8.62%)
58

(100%)

Molding
0

(0.00%)
0

(0.00%)
0

(0.00%)
2

(8.33%)
17

(70.83%)
5

(20.83%)
24

(100%)

Subtraction
1

(0.14%)
9

(1.29%)
14

(2.01%)
11

(1.58%)
7

(1.00%)
656

(93.98%)
698

(100%)
Notes: A primary technology is assigned if a plant has at least 20 percent job postings associated with a
technology and it is the largest proportion among the six technologies. Beginning primary technology is
calculated from period 2013-2017. Ending primary technology is calculated from period 2018-2022. Total
number of plants that stayed in a particular technology during 2013-2022 is 1,878 (94.5 percent). Narrowing
the aggregation period to 3 years (i.e., 2013-2015 vs. 2020-2022) yields a similar result. All plants are in
manufacturing (NAICS 31-33).
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Table A2: Control variables used in structural equation modeling

Variable
Dependent variable:

Complexity
Reciprocal

interdependence
Sequential

interdependence
Division of labor Specialization Span of control

(1) (2) (3) (4) (5) (6)
Entire process automation intensity (primary) 0.058*** -0.005 -0.034*** 0.037* 0.087*** -0.026*

(0.012) (0.012) (0.012) (0.020) (0.019) (0.014)
Entire process automation intensity (secondary) -0.014* 0.029* -0.011 0.010 0.034 -0.017***

(0.008) (0.015) (0.008) (0.018) (0.023) (0.006)
Entire process automation intensity (tertiary) 0.015** 0.001 -0.020** 0.050*** 0.064*** -0.024***

(0.006) (0.009) (0.009) (0.009) (0.014) (0.003)
Pre-production automation intensity 0.334*** -0.035** -0.085*** -0.002 0.014 -0.020

(0.023) (0.014) (0.015) (0.019) (0.019) (0.014)
Production automation intensity (primary) -0.243*** -0.012 -0.006 0.063*** -0.091*** 0.055***

(0.021) (0.019) (0.016) (0.017) (0.012) (0.021)
Production automation intensity (secondary) 0.045*** -0.060*** -0.049*** -0.015 0.043*** 0.034***

(0.013) (0.011) (0.011) (0.014) (0.013) (0.012)
Number of job postings 0.089*** 0.073*** -0.017** -0.078*** -0.262*** -0.022***

(0.011) (0.014) (0.008) (0.014) (0.027) (0.008)
Commuting zone’s population of working age 0.034*** -0.026* 0.020 0.068*** 0.039*** -0.051***

(0.013) (0.014) (0.013) (0.015) (0.014) (0.011)
Parent firm’s number of plants 0.040 0.028 0.034 0.058* -0.010 -0.019

(0.038) (0.020) (0.024) (0.031) (0.017) (0.018)
Union -0.299** -0.059 0.115 0.376** -0.218 -0.308**

(0.136) (0.205) (0.241) (0.172) (0.145) (0.128)
NAICS 321 -0.404 0.517* 0.299 0.097 -0.871*** 0.046

(0.263) (0.290) (0.318) (0.255) (0.310) (0.182)
NAICS 322 0.072 0.626** 0.071 -0.199 -0.789** 0.261

(0.253) (0.290) (0.254) (0.306) (0.327) (0.195)
NAICS 323 -0.044 0.189 -0.131 0.109 -1.017*** 0.478*

(0.252) (0.322) (0.269) (0.286) (0.321) (0.270)
NAICS 324 -0.015 0.382 -0.075 0.114 -0.675** 0.009

(0.264) (0.322) (0.243) (0.268) (0.329) (0.178)
NAICS 325 0.121 0.364 0.317 0.383 -0.634** 0.054

(0.241) (0.263) (0.224) (0.240) (0.306) (0.170)
NAICS 326 -0.106 0.435 0.271 0.019 -0.924*** 0.199

(0.250) (0.291) (0.253) (0.249) (0.315) (0.170)
NAICS 327 -0.319 0.087 0.050 0.119 -0.652** 0.104

(0.278) (0.279) (0.314) (0.266) (0.313) (0.176)
NAICS 331 -0.321 0.234 0.076 0.320 -0.711** 0.193

(0.260) (0.262) (0.229) (0.255) (0.309) (0.178)
NAICS 332 -0.091 0.481* 0.188 0.394* -0.781*** 0.083

(0.236) (0.256) (0.223) (0.232) (0.301) (0.166)
NAICS 333 -0.133 0.360 0.098 0.270 -0.754** 0.207

(0.237) (0.262) (0.221) (0.234) (0.304) (0.170)
NAICS 334 0.207 0.310 0.176 0.338 -0.738** 0.045

(0.235) (0.253) (0.220) (0.235) (0.301) (0.161)
NAICS 335 -0.172 0.457 0.271 0.162 -0.770** 0.187

(0.252) (0.287) (0.231) (0.241) (0.313) (0.202)
NAICS 336 -0.016 0.260 0.280 0.304 -0.973*** 0.195

(0.235) (0.255) (0.234) (0.236) (0.302) (0.168)
NAICS 337 -0.311 0.537 0.317 0.315 -1.113*** -0.113

(0.270) (0.353) (0.276) (0.258) (0.313) (0.187)
NAICS 339 0.247 0.292 0.293 0.376 -0.757** 0.069

(0.250) (0.265) (0.232) (0.249) (0.312) (0.182)

Notes: Coefficients above are estimated using multicategorical structural equation modeling with the lavaan
package in R. Standard errors (in parentheses) are clustered at the parent firm level. All variables are
standardized, except dummies for union status and NAICS. Analysis is performed on plants with main
NAICS 32 and 33. * p < 0.1; ** p < 0.05; *** p < 0.01.
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B Appendix figures

Figure B1: Production technology flowchart
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